Finite loops with dihedral inner mapping groups are solvable

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

finite bci-groups are solvable

‎let $s$ be a subset of a finite group $g$‎. ‎the bi-cayley graph ${rm bcay}(g,s)$ of $g$ with respect to $s$ is an undirected graph with vertex set $gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid xin g‎, ‎ sin s}$‎. ‎a bi-cayley graph ${rm bcay}(g,s)$ is called a bci-graph if for any bi-cayley graph ${rm bcay}(g,t)$‎, ‎whenever ${rm bcay}(g,s)cong {rm bcay}(g,t)$ we have $t=gs^alpha$ for some $...

متن کامل

Bruck Loops with Abelian Inner Mapping Groups

Bruck loops with abelian inner mapping groups are centrally nilpotent of class at most 2.

متن کامل

On finite loops whose inner mapping groups have small orders

We investigate the situation that the inner mapping group of a loop is of order which is a product of two small prime numbers and we show that then the loop is soluble.

متن کامل

On abelian inner mapping groups of finite loops

In this paper we consider finite loops of specific order and we show that certain abelian groups are not isomorphic to inner mapping groups of these loops. By using our results we are able to construct a finite solvable group of order 120 which is not isomorphic to the multiplication group of a finite loop.

متن کامل

A class of commutative loops with metacyclic inner mapping groups

We investigate loops defined upon the product Zm × Zk by the formula (a, i)(b, j) = ((a + b)/(1 + tf (0)f (0)), i + j), where f(x) = (sx + 1)/(tx + 1), for appropriate parameters s, t ∈ Z∗m. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If s = 1, then the loop is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2002.09.001